Skip to main content

· 11 min read
강정석

이제는 클래식이 되어버린 AlexNet부터 오늘날 뜨거운 관심을 받고 있는 여러 거대 언어 모델(이하 LLM)들까지, 우리는 필요에 맞게 다양한 모델을 학습하고 평가합니다. 그러나 현실적으로 모델을 여러 번 실행해 보고 경험이 쌓이기 전까지 우리는 학습이 언제 종료될지 가늠하기 어렵습니다.

Backend.AI의 뛰어난 스케줄링은 GPU의 유휴 시간을 최소화하고 우리가 잠든 사이에도 모델 학습이 실행될 수 있도록 하였습니다. 그렇다면 더 나아가서, 우리가 잠든 사이에 학습이 완료된 모델의 결과를 전달받을 수 있다면 어떨까요? 이번 글에서는 FastTrack의 신기능과 Slack을 활용하여 모델 학습 결과를 메시지로 수신하는 방법을 다뤄보도록 하겠습니다.

· 14 min read
Sujin Kim

래블업은 2024년 GTC 이벤트를 기념하여 특별한 이벤트를 개최했다. 참가자들은 래블업이 제공한 LLM 모델을 이용하여 주어진 이미지와 유사한 이미지를 생성했고, 높은 점수를 받은 참가자 중에서 추첨을 통해 무려 NVIDIA RTX 4090 그래픽 카드를 증정했다. 🫢
이번 포스트에서는 이벤트 페이지 중 참가자들의 점수를 실시간으로 확인할 수 있게 해주는 리더 보드 페이지에 사용된 GraphQL의 subscription 기능에 대해 알아보고자 한다.

· 18 min read
이규봉

안녕하세요, 저는 작년부터 Lablup에서 Backend.AI 매니저 프로세스에 Raft를 도입하는 작업을 맡아 수행하고 있습니다.

제가 수행 중인 관련 작업을 대략적으로 나타내어 보면 아래와 같습니다.

  1. Backend.AI 매니저 프로세스에 Raft를 도입해 리더-팔로워 구조로 만드는 것.
  2. 기존 분산 락 기반의 GlobalTimer를 Raft 기반의 글로벌 타이머로 변경하고, 클러스터에서 특정 작업이 정확히 한 번만 수행되도록 보장하는 것.
  3. 매니저 프로세스 간 공유 가능한 전역적인 상태 저장소를 매니저 프로세스에 내장시키고 적절하게 동기화하는 것.

이 글에선 이러한 작업을 수행하기 위해 제가 지난 1년간 삽질하며 개발하게 된 Raft 프레임워크와 이를 개발하며 마주친 여러 이슈들에 대해 소개드리고 총 300줄이 되지 않는 간략한 코드를 통해 분산 키값 저장소를 구현하는 raftify 예제 코드에 대해 설명드려 보도록 하겠습니다.